

Sources of retinol and carotene.

11

Instability of carotene.

Carotene is readily oxidizable owing to the presence of the conjugated double bond system .

□Carotenoids in plant material are subject to enzymatic oxidation through the lipoxygenase system, and to nonenzymatic processes accelerated by direct sunlight.

□Slow drying of forages in the sun-for hay preparation may cause an up to 80% destruction of carotene.

□High-temperature short-term heat treatment (artificial dehydration of green crops) deactivates the lipoxygenase and enables conservation of the carotene.

□Carotene is usually well preserved in silage, with total losses of about 10% typical of ensiling processes. Wilting prior to ensiling causes grater carotene losses of up to 30%.

YV/. V/1 ± ± 1

۲۸

	Vitamin A deficiency and bone.		
	Direct effect	Disorganized bone growth.	
		□In some cases, there is a constriction of the openings through which the optic and auditory nerves pass, thereby resulting in blindness and or deafness.	
▶	Indirect effect	Bone changes may also be responsible for the muscle incoordination and other nervous symptoms shown by vitamin A-deficient cattle, sheep and swine. These changes may be involved in the increase in cerebrospinal fluid pressure shown to be characteristics of the deficiency.	

٤.

YV/. V/1 ± ± 1

٤٦

Synthesis of Vitamin D

Activation of Vitamin D

٥ź

**/•*/1221

Vitamin D & Calcium Homeostasis

LOOPS CALCIUM, PTH, AND VITAMIN D FEEDBACK

٦٤

Vitamin D supplement.

Ruminants can receive adequate amounts of vitamin D from irradiation or from sun-cured hays.

□In animals that do not have direct access to sunlight confined farm birds, the endogenous vitamin D production does not meet the requirement and their diets must be supplemented with vitamin D concentrates.

□The use of vitamin D and its metabolites for milk fever. This disease and metabolic bone disorders respond to very small doses of synthetic 1, (OH)D3 and 1.25 (OH)2 D3.

□Exposure of animals to sunlight for a short time during the day is sufficient to convert provitamin D3 present in the skin to vitamin D3 which eliminates the need for a dietary source.

□Vitamin D2 is almost as effective as vitamin D3 for mammals, but vitamin D2 is virtually inactive in birds, thus poultry feed must be fortified with vitamin D of animal origin or synthetic vitamin D3.

٧١

YV/. V/1 ± ± 1

Sources of vitamin E and its supply to farm animals.

□α- Tocopherol is practically the only tocopherol present in green plants and in animal products.

□The content is quite high in green plants but low in feedstuffs of animal origin.

□The germs of cereal, particularly the germ oil as well as other plant oils are rich sources of tocopherols.

Cellular Antioxidant Defense Mechanisms

٨٨

۹.

Cell Membrane Structure

Blood clotting.

■ Uitamin E is an inhibitor of platelet aggregation.

□It may play a role by inhibiting peroxidation of arachidonic acid, which is required for formation of prostaglandins involved in platelet aggregation.

1...

Other functions.

especially of high-energy phosphate compounds such as creatine phosphate and adenosine triphosphate.

□ In synthesis of ascorbic acid.

□ In synthesis of ubiquinone.

In sulfur amino acid metabolism.

□ Vitamin E is reported to have a role in vitamin B12 metabolism.

1.7

1.9

110

Functions of Vitamin K in Coagulation

118

